Inductance : loop and partial için kapak resmi
Inductance : loop and partial
Başlık:
Inductance : loop and partial
Yazar:
Paul, Clayton R., author.
ISBN:
9780470561232
Fiziksel Niteleme:
1 PDF (xiii, 379 pages) : illustrations.
İçindekiler:
Preface -- 1 Introduction -- 1.1 Historical Background -- 1.2 Fundamental Concepts of Lumped Circuits -- 1.3 Outline of the Book -- 1.4 "Loop" Inductance vs. "Partial" Inductance -- 2 Magnetic Fields of DC Currents (Steady Flow of Charge) -- 2.1 Magnetic Field Vectors and Properties of Materials -- 2.2 Gauss's Law for the Magnetic Field and the Surface Integral -- 2.3 The Biot-Savart Law -- 2.4 Ampére's Law and the Line Integral -- 2.5 Vector Magnetic Potential -- 2.5.1 Leibnitz's Rule: Differentiate Before You Integrate -- 2.6 Determining the Inductance of a Current Loop: -- A Preliminary Discussion -- 2.7 Energy Stored in the Magnetic Field -- 2.8 The Method of Images -- 2.9 Steady (DC) Currents Must Form Closed Loops -- 3 Fields of Time-Varying Currents (Accelerated Charge) -- 3.1 Faraday's Fundamental Law of Induction -- 3.2 Ampère's Law and Displacement Current -- 3.3 Waves, Wavelength, Time Delay, and Electrical Dimensions -- 3.4 How Can Results Derived Using Static (DC) Voltages and Currents be Used in Problems Where the Voltages and Currents are Varying with Time? -- 3.5 Vector Magnetic Potential for Time-Varying Currents -- 3.6 Conservation of Energy and Poynting's Theorem -- 3.7 Inductance of a Conducting Loop -- 4 The Concept of "Loop" Inductance -- 4.1 Self Inductance of a Current Loop from Faraday's Law of Induction -- 4.1.1 Rectangular Loop -- 4.1.2 Circular Loop -- 4.1.3 Coaxial Cable -- 4.2 The Concept of Flux Linkages for Multiturn Loops -- 4.2.1 Solenoid -- 4.2.2 Toroid -- 4.3 Loop Inductance Using the Vector Magnetic Potential -- 4.3.1 Rectangular Loop -- 4.3.2 Circular Loop -- 4.4 Neumann Integral for Self and Mutual Inductances Between Current Loops -- 4.4.1 Mutual Inductance Between Two Circular Loops -- 4.4.2 Self Inductance of the Rectangular Loop -- 4.4.3 Self Inductance of the Circular Loop -- 4.5 Internal Inductance vs. External Inductance -- 4.6 Use of Filamentary Currents and Current Redistribution Due to the Proximity Effect -- 4.6.1 Two-Wire Transmission Line.

4.6.2 One Wire Above a Ground Plane -- 4.7 Energy Storage Method for Computing Loop Inductance -- 4.7.1 Internal Inductance of a Wire -- 4.7.2 Two-Wire Transmission Line -- 4.7.3 Coaxial Cable -- 4.8 Loop Inductance Matrix for Coupled Current Loops -- 4.8.1 Dot Convention -- 4.8.2 Multiconductor Transmission Lines -- 4.9 Loop Inductances of Printed Circuit Board Lands -- 4.10 Summary of Methods for Computing Loop Inductance -- 4.10.1 Mutual Inductance Between Two Rectangular Loops -- 5 The Concept of "Partial" Inductance -- 5.1 General Meaning of Partial Inductance -- 5.2 Physical Meaning of Partial Inductance -- 5.3 Self Partial Inductance of Wires -- 5.4 Mutual Partial Inductance Between Parallel Wires -- 5.5 Mutual Partial Inductance Between Parallel Wires that are Offset -- 5.6 Mutual Partial Inductance Between Wires at an Angle to Each Other -- 5.7 Numerical Values of Partial Inductances and Significance of Internal Inductance -- 5.8 Constructing Lumped Equivalent Circuits with Partial Inductances -- 6 Partial Inductances of Conductors of Rectangular Cross Section -- 6.1 Formulation for the Computation of the Partial Inductances of PCB Lands -- 6.2 Self Partial Inductance of PCB Lands -- 6.3 Mutual Partial Inductance Between PCB Lands -- 6.4 Concept of Geometric Mean Distance -- 6.4.1 Geometrical Mean Distance Between a Shape and Itself and the Self Partial Inductance of a Shape -- 6.4.2 Geometrical Mean Distance and Mutual Partial Inductance Between Two Shapes -- 6.5 Computing the High-Frequency Partial Inductances of Lands and Numerical Methods -- 7 "Loop" Inductance vs. "Partial" Inductance -- 7.1 Loop Inductance vs. Partial Inductance: Intentional Inductors vs. Nonintentional Inductors -- 7.2 To Compute "Loop" Inductance, the "Return Path" for the Current Must be Determined -- 7.3 Generally, There is no Unique Return Path for all Frequencies, Thereby Complicating the Calculation of a "Loop" Inductance -- 7.4 Computing the "Ground Bounce" and "Power Rail Collapse" of a Digital Power Distribution System Using "Loop" Inductances.

7.5 Where Should the "Loop" Inductance of the Closed Current Path be Placed When Developing a Lumped-Circuit Model of a Signal or Power Delivery Path? -- 7.6 How Can a Lumped-Circuit Model of a Complicated System of a Large Number of Tightly Coupled Current Loops be Constructed Using "Loop" Inductance? -- 7.7 Modeling Vias on PCBs -- 7.8 Modeling Pins in Connectors -- 7.9 Net Self Inductance of Wires in Parallel and in Series -- 7.10 Computation of Loop Inductances for Various Loop Shapes -- 7.11 Final Example: Use of Loop and Partial Inductance to Solve a Problem -- Appendix A: Fundamental Concepts of Vectors -- A.1 Vectors and Coordinate Systems -- A.2 Line Integral -- A.3 Surface Integral -- A.4 Divergence -- A.4.1 Divergence Theorem -- A.5 Curl -- A.5.1 Stokes's Theorem -- A.6 Gradient of a Scalar Field -- A.7 Important Vector Identities -- A.8 Cylindrical Coordinate System -- A.9 Spherical Coordinate System -- Table of Identities, Derivatives, and Integrals Used in this Book -- References and Further Readings -- Index.
Özet:
"Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--BOOK JACKET.
Konu Başlığı:

Elektronik Erişim:
Abstract with links to resource http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5493588